
Default Reasoning on Top of Ontologies with dl-Programs

DAO Tran Minh and Thomas Eiter (Faculty Mentor)
Institute for Information Systems, Vienna University of Technology, Austria

Email: {dao,eiter}@kr.tuwien.ac.at

Abstract — We study the usefulness of description logic pro-
grams (dl-programs) in implementing Reiter’s default logic on
top of a description logic knowledge base (DL-KB). To this
end, we investigate transformations from default theories to dl-
programs based on different established algorithms for com-
puting default theory extensions, namely the select-defaults-
and-check and the select-justifications-and-check algorithms.
In each transformation, additional constraints are exploited
to prune the search space based on conclusion-conclusion or
conclusion-justification relations. The implementation was de-
ployed as a new component in the dl-plugin for dlvhex, and
evaluated with various experimental test ontologies, which
showed promising results.

I. INTRODUCTION

Default logic [1] has been one of the most prominent
nonmonotonic reasoning formalisms due to its close re-
lationship to common-sense reasoning. Ontologies are
a key component of the future Semantic Web and rea-
soning on top also needs to handle default informa-
tion. However, nonmonotonic reasoning with an on-
tology alone is not possible because description logics
(DLs) which are used as ontology languages are mono-
tonic. Therefore, incorporating default reasoning into
ontologies is an interesting topic to take into account.
The first attempt in this field was proposed in [2] which
imposes some restrictions regarding decidability. More-
over, there has not been any implementation or further
development on this approach since then. One of the rea-
sons was the lack of support from research on integrating
rules and ontologies at that time [3].

In this work, we investigate the problem of enabling
default reasoning on top of ontologies specified by DL-
KBs, based on an available mechanism that allows for
integrating rules and ontologies, namely dl-programs [4].
In addition to our theoretical results, we provide a front-
end as a new component in the dl-plugin [5] for the
HEX-program solver dlvhex1 [6], which implements dl-
programs.

II. EMBEDDING DEFAULTS OVER DESCRIP-
TION LOGICS INTO DL-PROGRAMS

In [7], we present three transformations to embed default
reasoning into dl-programs. Due to space constraints, we
present here only one, viz. Υ, which we illustrate in a
simple example rather than in full details.

1http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Assume that we have a small DL-KB about birds and
penguins:

L =
{

Flier v ¬NonFlier ,Penguin v Bird ,
Penguin v NonFlier ,Bird(t)

}

and a set of defaults:

D =
{

Bird(X) : Flier(X)
Flier(X)

}

Intuitively, we have a DL-KB in which flying and non-
flying objects are distinguished. We know that penguins,
which are birds, do not fly. We also know that birds nor-
mally fly, but this fact cannot be added into L because it
will make L inconsistent. Having a bird named Tweety, t
for short, and no more information, we would like to con-
clude that t flies; and later if we learn that t is a penguin,
the opposite conclusion should hold. To make this possi-
ble, we add a set of defaults D as about on top of L. We
call ∆ = 〈L,D〉 a default theory over a DL-KB. Through
Υ, ∆ is transformed to a dl-program KBdf

Υ (∆) = (L,P)
where P consists of the following dl-rules:

cons_Flier(X) :-
dom(X), not out_cons_Flier(X).

out_cons_Flier(X) :-
dom(X), not cons_Flier(X).

in_Flier(X) :- cons_Flier(X),
dom(X), DL[Flier+=in_Flier;Bird](X).

:- cons_Flier(X),
DL[Flier+=in_Flier;-Flier](X).

:- not DL[Flier+=in_Flier;-Flier](X),
out_cons_Flier(X).

dom(t).

These rules can be explained as follows: the first two
guess if assuming an object can fly is consistent or not
with the answer set, i.e., the agents’ belief set. The third
rule aims to find which objects can fly under the consis-
tency assumption above, where the atom DL[...] in-
corporates the assumption on Fliers. The last two rules
are two constraints: the first prevents cases in which we
guessed that an object can fly is consistent to the answer
set but in fact we conclude that it does not fly. Similarly,
the second constraint kills all answer sets in which we
guessed that an object cannot fly is consistent with the
answer set but then we could not conclude that it does
not fly.

With this dl-program, we have the desired answer set
I = {dom(t), cons F lier(t), in F lier(t)} which en-

default rules
[A(X);B(X)]
 /[C(X)]

dl-rules

HEX-rules

 dl-rules
C(X):-DL[;A](X),
 not DL[;-B](X).

dl-rules

HEX-rules

HEX-
rules

dlvhex Models/
Extensions

User

ontology ontology
dfconverter

dlconverter

Figure 1: Strategy for implementing the df-converter

tails that t flies by default. If we now change to a new
DL-KB L′ = L ∪ {Penguin(t)}, then from the dl-
program KBdf

Υ (∆′) = (L′, P), t can no longer be in-
ferred to be able to fly, and the corresponding answer set
is I ′ = {dom(t), out cons F lier(t)}.

The other two transformations Π and Ω, the proof of
correctness, and an optimizing technique using pruning
rules are presented in [7].

III. FRONT-END OVERVIEW

The architecture of the front-end is shown in Figure 1.
Users provide input, including a set of default rules along
with a DL-KB in an OWL file, and then get the ex-
tensions of the default theory in terms of answer sets.
Other optional inputs can be either dl-rules or low-level
HEX-rules. Recall that dlvhex is a solver for HEX-
programs. It receives input in terms of HEX-rules and
returns results as answer sets to the user. As dlvhex has
a dl-plugin, dl-programs are converted transparently into
HEX-programs, the ordinary user is unaware of HEX-
rules. However, this does not prevent experts from pro-
viding more sophisticated input such as constraints in
terms of dl-rules or HEX-rules to reduce the search space
and speed up the evaluation. In fact, we do provide a
technique in which the user can specify more supportive
information, i.e., typing predicates that helps our imple-
mentation gaining significant performance improvement.
Details on this technique can be found in [7].

Utilizing the dl-plugin, we implement a df-converter
whose input contains default rules accompanied with a
DL-KB, optional dl-rules, or even HEX-rules. This con-
verter transforms all the default rules into dl-rules based
on different transformations, with the help of the DL-
KB serving as the sources of individuals for the do-
main predicates to guarantee the safety condition [6].
Then, the transformed dl-rules, along with other input dl-
and HEX-rules, are transferred to the dl-converter. The
rest of the evaluation will be done by the dl-plugin and
dlvhex. For more details on the implementation of the df-
converter, we refer to the Master’s Thesis [7] on which
this abstract is based. The thesis also contains experi-
mental results, and comparisons between different trans-

formations, which reveals interesting tasks to improve
the overall performance of the system.

IV. FUTURE WORK

Concerning our implementation of the front-end, some
issues remain for future work. Firstly, we would like to
investigate more sophisticated pruning rules depending
on the structure of the default theory. Secondly, a closer
look into particular kinds of default theories such as nor-
mal or semi-normal default should help to find more ef-
fective transformations.

As our work depends on dlvhex and the dl-plugin, the
experimental results suggest the following tasks to in-
crease the system performance.

A caching technique which is only available now for
dl-atoms would give additional benefit if it can be im-
plemented for cq-programs [8], an extended version of
dl-programs, and already be deployed in the dl-plugin.

dlvhex is now using RacerPro as its only DL-reasoner.
It would also be interesting to look at other possibilities
interfacing dlvhex with different DL-reasoners such as
KAON2 or Pellet, and then compare the results.

Currently, dlvhex takes all grounded dl-programs and
computes the answer sets. Another challenging task
would be to automatically classify the input and do only
necessary rules grounding for a smaller search space.

REFERENCES

[1] R. Reiter. A logic for default reasoning. Artificial
Intelligence, 13(1-2):81–132, 1980.

[2] F. Baader and B. Hollunder. Embedding defaults
into terminological knowledge representation for-
malisms. Autom. Reasoning, 14(1):149–180, 1995.

[3] G. Antoniou et al., Combining Rules and
Ontologies: A survey. Technical Report
IST506779/Linköping/I3-D3/D/PU/a1, Linköping
University, Feb 2005.

[4] T. Eiter, G. Ianni, Th. Lukasiewicz, R. Schindlauer,
and H. Tompits. Combining answer set program-
ming with description logics for the semantic web.
Artificial Intelligence, 172(12-13):1495–1539, 2008.

[5] T. Krennwallner. Integration of Conjunctive Queries
over Description Logics into HEX-Programs. Mas-
ter’s thesis, TU Wien, Oct 2007.

[6] R. Schindlauer. Answer-Set Programming for the Se-
mantic Web. PhD thesis, TU Wien, Dec 2006.

[7] M. T. DAO. Default Reasoning on Top of Ontologies
with dl-Programs. Master’s thesis, TU Wien, Jun
2008.

[8] T. Eiter, G. Ianni, T. Krennwallner, R. Schindlauer.
Exploiting Conjunctive Queries in Description Logic
Programs. Annals of Mathematics and Artificial In-
telligence. 2008.

