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Abstract. We consider a realization of Reiter-style default logic on top of descrip-
tion logic knowledge bases (DL-KBs). To this end, we present elegant transforma-
tions from default theories to conjunctive query (cq-)programs that combine rules
and ontologies, based on different methods to find extensions of default theories.
The transformations, which are implemented in a front-end to a DL-reasoner, ex-
ploit additional constraints to prune the search space via relations between default
conclusions and justifications. The front-end is a flexible tool for customizing the
realization, allowing to develop alternative or refined default semantics. To our
knowledge, no comparable implementation is available.

1 Introduction

Ontologies are very important for representing terminological knowledge. In particular,
description logics (DLs) have proved to be versatile formalisms with far-reaching appli-
cations like expressing knowledge on the Semantic Web; the Ontology Web Language
(OWL), which builds on DLs, has fostered this development.

However, well-known results from the literature show that DLs have limitations:
they do not allow for expressing default knowledge due to their inherent monotonic
semantics. One needs nontrivial extensions to the first-order semantics of description
logics to express exceptional knowledge.

Example 1. Take, as an example, a bird ontology expressed in the DL-KB L = {Flier
v ¬NonFlier , Penguin v Bird ,Penguin v NonFlier ,Bird(tweety)}. Intuitively,
L distinguishes between flying and non-flying objects. We know that penguins, which
are birds, do not fly. Nevertheless, we cannot simply add the axiom Bird v Flier to
L to specify the common view that “birds normally fly,” as this update will make L
inconsistent. From our bird ontology, we would like to conclude that Tweety flies; and if
we learn that Tweety is a penguin, the opposite conclusion would be expected.

Hence, the simple ontology L from above cannot express exceptional knowledge. Default
logic, a prominent formalism for expressing nonmonotonic knowledge in first-order
logic, was introduced in the seminal work by Reiter [1]. To allow for nonmonotonicity
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in L, an extension of the semantics of terminological knowledge was given in [2], which
is an early attempt to support default logic in the domain of description logics.

Several other attempts to extend DLs with nonmonotonic features have been made,
based on default logics [3, 4], epistemic operators [5, 6], circumscription [7, 8], or argu-
mentative approach [9]. They all showed that gaining both sufficient expressivity and
good computational properties in a nonmonotonic DL is non-trivial.

However, reasoning engines for expressive nonmonotonic DLs are still not available
(cf. Section 7). This forces users needing nonmonotonic features over DL-KBs to craft
ad hoc implementations; systems for combining rules and ontologies (see [10]) might be
helpful in that, but bear the danger that a non-standard semantics emerges not compliant
with the user’s intention. In fact, the less versatile a user is in KR formalisms, the higher
is the likelihood that this will happen, even if just simple default rules of the form: “If A
is true and B can be consistently assumed, then conclude C,” should be captured.

With the aim to offer a user-friendly reasoner over ontologies, we consider default
reasoning on top of ontologies based on cq-programs [11], which integrate rules and
ontologies. They slightly extend dl-programs [12] and allow for bidirectional communi-
cation between logic programs and DL-KBs by means of updates and powerful (unions
of) conjunctive queries. Our main contributions are as follows.
• We consider a realization of Reiter-style default logic on top of DL-KBs, which
amounts to a decidable fragment of Baader and Hollunder’s terminological default
logic [2], using cq-programs. A realization using dl-programs is discussed in [12], but is
complex and more of theoretical interest than practical.
• We present two novel transformations of default theories into cq-programs, which are
based on different principles and significantly improve over a similar transformation of
default theories into dl-programs [12], both at the conceptual and the computational level.
The former is apparent from the elegant formulation of the new transformations, while
the latter is evidenced by experimental results. Furthermore, we present optimization
methods by pruning rules, which are tailored specifically for the new translations.
• We describe a front-end as a new part of the dl-plugin [11] for the dlvhex engine
implementing cq-programs. In this front-end, users can specify input comprising default
rules in a text file and an ontology in an OWL file, run a command and get (descriptions
of) the extensions of the default theory. Importantly, expert users in logic programming
(LP) can exploit the front-end also at lower levels and customize the transformations, by
adding further rules and constraints. In this way, alternative or refined semantics (e.g.,
preferences) may be realized, or the search space pruned more effectively.

Our front-end approach provides a simple and intuitive way to encode default knowl-
edge on top of terminological KBs, relieving users from developing ad hoc implementa-
tions (which is rather difficult and error-prone). Furthermore, besides the benefit that
special constructs of logic programs like weak constraints or aggregates can be utilized
in customizations, the dlvhex implementation also offers the possibility to combine
DL-KBs with other knowledge sources like, e.g., RDF KBs on a solid theoretical basis.

2 Preliminaries

Description Logics. We assume familiarity with DLs (cf. [13]), in particular any exten-
sion of ALC which can be recast to first-order logic w.r.t. CQ-answering (conceptually,



we can apply Reiter-style default logic on top of any such DLs).1 A DL-KB L is a finite
set of axioms (TBox) and factual assertions (ABox) α in the respective DL, which are
formed using disjoint alphabets of atomic concepts, roles, and individuals, respectively.
By L |= α we denote logical consequence of an axiom resp. assertion α from L.

Default Logic. In this paper, we restrict Reiter’s default logic [1] and consider only
conjunctions of literals in default rules. We adjust default theories in a way such that the
background theory, given by a DL-KB L, represents an ontology.

A default δ (over L) has the form α(X):β1(Y1),...,βm(Ym)
γ(Z) , where α(X) = α1(X1)∧

· · ·∧αk(Xk), βi(Yi) = βi,1(Yi,1)∧· · ·∧βi,`i
(Yi,`i

), γ(Z) = γ1(Z1)∧· · ·∧γn(Zn),
and X , Yi, and Z are all variables occurring in the respective conjuncts. We allow c
to be c∗ or ¬c∗ for every c ∈ {αi, βi,j , γi}, where each α∗i , β

∗
i,j , γ

∗
i is either an atomic

concept or role name in L. A default theory over L is a pair ∆ = 〈L, D〉, where L is a
DL-KB and D is a finite set of defaults over L.

Example 2. Consider the DL-KB L in Ex. 1 and D =
{

Bird(X):Flier(X)
Flier(X)

}
, then ∆ =

〈L, D〉 is a default theory over L.

Given that L is convertible into an equivalent first-order formula π(L), we can view ∆ as
a Reiter-default theory T = 〈W, D〉 over a first-order language L, where W = {π(L) },
and apply concepts from [1] to ∆; we recall some of them in the sequel.

The semantics of T = 〈W, D〉 is given in terms of its extensions, which we recall
next; intuitively, they are built by applying defaults in D as much as possible to augment
the definite knowledge in W with plausible conclusions.

Suppose T = 〈W, D〉 is closed (i.e., defaults have no free variables). Then for any
set of sentences S ⊆ L, let ΓT (S) be the smallest set of sentences from L such that
(i) W ⊆ ΓT (S); (ii) ΓT (S) is deductively closed, i.e., Cn(ΓT (S)) = ΓT (S); and (iii) if
α:β1,...,βm

γ ∈ D, α ∈ ΓT (S), and ¬β1, . . . ,¬βm /∈ S then γ ∈ ΓT (S). Here, ` denotes
classical derivability and Cn(F) = {φ | F ` φ and φ is closed}, for every set F of
closed formulas. For an arbitrary T = 〈W, D〉, ΓT is applied to its closed version cl(T ),
i.e., each default in D is replaced by all its grounded instances w.r.t. L. Then, a set of
sentences E ⊆ L is an extension of T, iff E = ΓT (E) [1].

cq-Programs. Informally, a cq-program consists of a DL-KB L and a disjunctive
program P that may involve queries to L. Roughly, such a query may ask whether a
specific conjunction of atoms or union of such conjunctions is entailed by L or not.

Syntax. A conjunctive query (CQ) q(X) is an expression {X | Q1(X1), . . . , Qn(Xn)},
where each Qi is a concept or role expression and each Xi is a list of variables and
individuals of matching arity; X ⊆ Vars(X1, . . . ,Xn) are its distinguished (or output)
variables, where Vars(X1, . . . ,Xn) is the set of variables appearing in X1, . . . ,Xn.
Intuitively, q(X) is a conjunction Q1(X1) ∧ · · · ∧Qn(Xn) of concept and role expres-
sions, which is true if all conjuncts are satisfied, and then projected on X .

1 This includes inverse roles (I), qualified number restrictions (Q), nominals (O), and role
hierarchy (H), where a DL-KB L is convertible into an equivalent first-order formula π(L) [13];
role transitivity (S) may occur in L as well, but is disallowed in defaults.



A union of conjunctive queries (UCQ) q(X) is a disjunction
∨m

i=1 qi(X) of CQs
qi(X). Intuitively, q(X) is satisfied, whenever some qi(X) is satisfied.

A cq-atom α is of form DL[λ; q(X)](X), where λ = S1 op1 p1, . . . , Sm opm pm

(m ≥ 0) is an (input) list of expressions Si opi pi, each Si is either a concept or a
role name, opi ∈ {], −∪}, pi is an (input) predicate symbol matching the arity of Si,
and q(X) is a (U)CQ. Intuitively, opi = ] increases Si by the extension of pi, while
opi = −∪ increases ¬Si. If m = 1, α amounts to a dl-atom DL[λ; Q](t) as in [12] where
X = Vars(t).

A literal l is an atom p or a negated atom ¬p. A cq-rule r is an expression of the form
a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . ,not bn , where every ai is a literal and every
bj is either a literal or a cq-atom. We define H(r) = {a1, . . . , ak} and B(r) = B+(r)
∪ B−(r), where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}. If H(r) = ∅
and B(r) 6= ∅, then r is a constraint.

A cq-program KB = (L, P ) consists of a DL-KB L and a finite set of cq-rules P .

Example 3. Let L be from Ex. 1 and P = {flies(tweety)∨nflies(tweety); bird(X)←
DL[Flier ] flies;Flier(X) ∨NonFlier(X)](X)}. Then, KB = (L, P ) is a cq-pro-
gram. The body of the rule defining bird is a cq-atom with the UCQ q(X) = Flier(X)∨
NonFlier(X) and an input list λ = Flier ]flies . In this cq-atom we update the concept
Flier in L with the extension of flies before asking for the answers of q(X).

Semantics. Given a cq-program KB = (L, P ), the Herbrand base of P , denoted HBP ,
is the set of all ground literals with predicate symbols in P and constant symbols in a
(predefined) set C. An interpretation I relative to P is a consistent subset of HBP . We
say I is a model of l ∈ HBP under L, or I satisfies l under L, denoted I |=L l, if l ∈ I .

For any CQ q(X) = {X | Q1(X1), . . . , Qn(Xn)}, let φq(X) = ∃Y
∧n

i=1 Qi(Xi),
where Y are the variables not in X , and for any UCQ q(X) =

∨m
i=1 qi(X), let

φq(X) =
∨m

i=1 φqi
(X). Then, for any (U)CQ q(X), the set of answers of q(X) on L

is the set of tuples ans(q(X), L) = {c ∈ C|X| | L |= φq(c)}.
An interpretation I satisfies a ground instance a(c) of a(X) = DL[λ; q(X)](X)

(i.e., all variables in q(X) are replaced by constant symbols from C), denoted I |=L a(c),
if c ∈ ans(q(X), L ∪ λ(I)), where λ(I) =

⋃m
i=1 Ai(I) and (i) Ai(I) = {Si(e) |

pi(e) ∈ I}, for opi = ], and (ii) Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪.
I satisfies a ground cq-rule r, denoted I |=L r, if I |=L H(r) whenever I |=L B(r),

where I |=L H(r) if I |=L a for some a ∈ H(r), and I |=L B(r) if I |=L a for all
a ∈ B+(r) and I 6|=L a for all a ∈ B−(r).

I is a model of (or satisfies) a cq-program KB = (L, P ), denoted I |= KB , if
I |=L r for all r ∈ ground(P ). The (strong) answer sets of KB , which amount to
particular models of KB , are then defined like answer sets of an ordinary disjunctive
logic program using the Gelfond-Lifschitz reduct P I of P w.r.t. I , where cq-atoms are
treated like ordinary atoms; I is then a (strong) answer set of KB , if I is a minimal
model (w.r.t. set inclusion) of (L, P I) (cf. also [12]).

Example 4 (cont’d). The strong answer sets of KB in Ex. 3 are M1 = {flies(tweety),
bird(tweety)} and M2 = {nflies(tweety)}. The answer set M1 updates L in such a
way that we can infer q(tweety) from L ∪ λ(M1), thus bird(tweety) ∈M1, whereas in
M2, L ∪ λ(M2) 6|= q(tweety), and so bird(tweety) /∈M2.



3 Transformations from Default Theories to cq-Programs

In the sequel, assume that we have a default theory ∆ = 〈L, D〉 over L.
We first revisit the transformation in [12], which we call Π . For each default of form

α(X):β1(Y1),...,βm(Ym)
γ(Z) (where the βi and γ are just literals), it uses the following rules:

in γ(Z)← not out γ(Z); out γ(Z)← not in γ(Z) (1)

g(Z)← DL[λ; α1](X1), . . . , DL[λ; αk](Xk), (2)

not DL[λ′;¬β1](Y1), . . . , not DL[λ′;¬βm](Ym)

fail ← DL[λ′; γ](Z), out γ(Z), not fail (3)

fail ← not DL[λ; γ](Z), in γ(Z), not fail (4)

fail ← DL[λ; γ](Z), out γ(Z), not fail (5)

where λ′ contains for each default δ an update γ∗ ] in γ if γ(Z) is positive, and an
update γ∗−∪in γ if γ(Z) is negative; λ is similar with g in place of in γ.

Π is based on a guess-and-check approach: the rules (1) guess whether the conclusion
γ(Z) belongs to an extension E or not. If yes, a ground atom with auxiliary predicate
in γ, which is used in the input list λ′ to update L, is inferred. Intuitively, L ∪ λ′(I)
represents E. Next, the rule (2) imitates the Γ∆ operator to compute Γ∆(E). The
outcome is stored in an auxiliary predicate g, which is used in a second input list λ to
update L (independent from λ′); intuitively, L ∪ λ(I) represents Γ∆(E), Finally, the
rule (3) checks whether the guess for E is compliant with L, and the rules (4) and (5)
check whether E and Γ∆(E) coincide. If this is the case, then E is an extension of ∆.

A natural question is whether we can have a simpler transformation; in particular,
with fewer and more homogeneous cq-atoms, in the sense that the update lists are
similar; this would help to reduce communication between the rules and L, such that the
evaluation of the transformation is more effective.

We give a positive answer to this question and present two novel transformations,
called Ω and Υ , which are based on different ways of computing extensions, inspired by
algorithms select-default-and-check and select-justification-and-check that were earlier
mentioned in [14]. In fact, in both of them a single input list λ is sufficient for all
cq-atoms. Furthermore, by the use of UCQs, we can easily handle also defaults with
conjunctive justifications and conclusions.

The transformations Ω and Υ are compactly presented in Table 1, where we use the
following notation. Given a default α(X):β1(Y1),...,βm(Ym)

γ(Z) , for Ψ ∈ {in, cons, cons}
and e(W ) ∈ {γ(Z),γ∗i (Zi),βi(Yi), β∗i,j(Yi,j)}, we use Ψ(e(W )) to denote Ψe(W )
(where Ψe is a predicate name).
Transformation Ω. The main idea of Ω is to use only one update λ instead of both λ
and λ′ in Π , hence only one type of auxiliary predicates is needed, namely in(γ(X)).

This transformation is quite intuitive and follows exactly the usual way of evaluating
extensions in default theories: “If the prerequisites can be derived, and the justifications
can be consistently assumed, then the conclusion can be concluded.”

Intuitively, in the rule with head in(γ(X)), we apply the Γ∆ operator to find out
whether the whole consequent γ(Z) is in the extension E or not. If this is the case, then
each γi(Zi) in γ(Z) will also be concluded to be in E by rules inR. In order to check



Table 1: Transformations Ω/Υ of default theory ∆ to cq-program KBΩ(∆)/KBΥ (∆)

For ∆ = 〈L, D〉 and X ∈ {Ω, Υ}, let KBX(∆) = (L, PX), where PX =
S

δ∈D X(δ) and

Ω(δ) = R∪ {in(γ(Z))← DL[λ; α(X)](X),
not DL[λ; d(β1(Y1))](Y1), . . . , not DL[λ; d(βm(Ym))](Ym) }

Υ (δ) = R∪ {in(γ(Z))← DL[λ; α(X)](X), cons(β1(Y1)), . . . , cons(βm(Ym))} ∪8>>><>>>:
fail ← cons(βi(Yi)), DL[λ; d(βi(Yi))](Yi), not fail ;

fail ← cons(βi(Yi)), not DL[λ; d(βi(Yi))](Yi), not fail ;

cons(βi(Yi)) ← not cons(βi(Yi));

cons(βi(Yi)) ← not cons(βi(Yi)) | 1 ≤ i ≤ m

9>>>=>>>;
where λ = (γ∗i ] inγi , γ

∗
i −∪ in¬γi | δ ∈ D), d(βi(Yi)) = ¬βi,1(Yi,1) ∨ · · · ∨ ¬βi,`i(Yi,`i),

andR = {in(γi(Zi))← in(γ(Z)) | 1 ≤ i ≤ n}.

the satisfaction of the prerequisite, we use a CQ, while consistency of a justification is
checked by a UCQ. In case the prerequisite or a justification is just a literal, the query
amounts to instance checking (which is more efficient).

Example 5. Consider default theory ∆ in Ex. 2. Since the prerequisite, justification and
conclusion of the default in D are just literals,R can be simplified to ∅ and the cq-atoms
to instance checks. Therefore, PΩ consists only of the rule

inFlier (X)← DL[λ;Bird ](X), not DL[λ;¬Flier ](X) ,

where λ = Flier ] inFlier ,Flier −∪ in¬Flier . The single answer set of KBΩ(L, D) is
IΩ = {inFlier (tweety)} which corresponds to the single extension.

Transformation Υ. In this transformation, we make use of the Select-justifications-
and-check algorithm. The definition of Υ (δ) in Table 1 is explained as follows. The
first rule emulates the Γ∆ operator to find the set of consequences under a consistency
assumption for the default justifications βi(Yi) with the extension E; like above, with
γ(Z) also each γi(Zi) is concluded by the rules inR.

The assumptions for all justifications βi(Yi) are guessed with the last two rules, and
they are checked with two constraints: the first prevents cases in which we guess that
βi(Yi) is consistent with E but we can in fact derive ¬βi(Yi). Similarly, the second
constraint eliminates all models in which βi(Yi) is guessed to be inconsistent with E
but we cannot derive its negation.

We can see that transformation Υ involves less communication with the DL-KB
than Ω; instead, it has explicit guessing on the logic program side. If the number of
justifications is small, we may expect better performance.
Example 6. For the default theory ∆ in Ex. 2, PΥ consists of the following rules:

consFlier (X)← not consFlier (X); consFlier (X)← not consFlier (X)

inFlier (X)← DL[λ;Bird ](X), consFlier (X)

fail ← consFlier (X), DL[λ;¬Flier ](X), not fail

fail ← consFlier (X), not DL[λ;¬Flier ](X), not fail



where λ = Flier ] inFlier ,Flier −∪ in¬Flier . The single answer set of KBΥ (L, D) is
IΥ = {inFlier (tweety), consFlier (tweety)} which corresponds to the single extension.

The following theorem shows the correctness of our transformations.

Theorem 1. Let ∆ = 〈L, D〉 be a default theory over L, and X ∈ {Ω, Υ}. Then:

(i) For each extension E of ∆, there exists a (unique) strong answer set M of
KBX(∆), such that E = Cn(L ∪ λ(M)).

(ii) For each strong answer set M of KBX(∆), the set E = Cn(L ∪ λ(M)) is an
extension of ∆.

Note that in general, answering UCQs over expressive DL-KBs may be undecidable;
in our case variables range effectively only over known individuals in the KB (i.e.,
constants in C). We also mention that the further transformation of KBX(∆) into HEX-
programs [15] for execution in dlvhex requires rules to be domain-expansion safe; this
is easily accomplished by introducing a domain predicate dom, adding to the body of
each rule for each variable Y the atom dom(Y ), and appending a fact dom(a) to PX

for each individual a in the KB (see [15] for details).

4 Optimization

This section introduces pruning rules to reduce the search space in model computation.
In what follows, we consider defaults δ1 and δ2, where

δi =
αi,1(Xi,1) ∧ · · · ∧ αi,ki

(Xi,ki
) : βi,1(Yi,1), . . . , βi,mi

(Yi,mi
)

γi,1(Zi,1) ∧ · · · ∧ γi,ni
(Zi,ni

)
.

Based on the interaction of δ1 and δ2, we can add the following rules. Let γi(Zi) be
short for γi,1(Zi,1) ∧ · · · ∧ γi,ni

(Zi,ni
), where Zi =

⋃
1≤ji≤ni

Zi,ji
, for i = 1, 2.

Forcing other defaults to be out. The well-known Nixon Diamond example motivates
a shortcut in dealing with defaults whose conclusions are opposite. In this example, the
conclusion of one default blocks the other. To prune such cases, we can add

fail ← in(γ1(Z1)), in(γ2(Z2)), not fail (6)

to PX , where X ∈ {Ω, Υ}, whenever there exist 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2 s.t.
γ1,j1(Z1,j1) and ¬γ2,j2(Z2,j2) are unifiable.

Furthermore, also the relations between conclusions and justifications can be ex-
ploited for pruning purpose. If there exist j ∈ {1, . . . , n1} and j′ ∈ {1, . . . ,m2} such
that γ1,j(Z1,j) is unifiable with a disjunct in ¬β2,j′(Y2,j′), then the conclusion γ1(Z1)
of δ1 will block the application of δ2 and the constraint (6) can also be added to PX .

Forcing other defaults to be in. If γ1(Z1) is part of γ2(Z2), then adding an instance
of γ2(Z2) to an extension E requires also to add the respective instance of γ1(Z1) to E.
Thus, if for every j1 ∈ {1, . . . , n1}, γ1,j1(Z1,j1) is unifiable with γ2,j2(Zi,j2) for some
j2 ∈ {1, . . . , n2}, then we add the following rule to PX , where X ∈ {Ω, Υ}:
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in(γ1(Z1))← in(γ2(Z2)) .

Defaults whose conclusions are already in the background theory. Each extension
contains all consequences of the background theory W of the default theory (Cn(W ) ⊆
E). Hence, it is worth testing whether for a default α(X):β1(Y1),...,βm(Ym)

γ(Z) a conjunct
γi(Xi) ∈ γ(X) can be concluded from the DL-KB before the guessing phase or the
application of the Γ∆ operator. To this end, we can add to PX(X ∈ {Ω, Υ}) the rule

in(γi(Xi))← DL[γi](Xi) .

5 Implementation

We have implemented the transformations from Section 3 in a framework that provides
the user with a front-end to cq-programs for transparent default reasoning over ontologies.
An architectural overview of this front-end is shown in Fig. 1.

The implementation makes use of the dlvhex environment,2 a framework for solving
HEX-programs. It has a plugin facility that allows to define external atoms, and dl-plugin
is one of the plugins deployed in this environment. The dl-plugin provides a mechanism
for converting cq-programs to HEX-programs. It receives a cq-program or a HEX-program
together with an OWL ontology, communicates with a DL-reasoner to evaluate queries
in the program, and dlvhex processes the query answers and generates models of the
program. Based on this framework, we implemented a converter for default rules on top
of description logics, df-converter, as a pre-processor in the dl-plugin which takes a set
of defaults and an OWL ontology as input, converts this input into cq-rules according to a
transformation, and transfers the result to the dl-plugin; dlvhex then does the rest. Hence,
all the complications including cq-programs, HEX-programs, and the transformations
are transparent to the users. They just need to specify defaults in a simple format and get
(descriptions of) the extensions of the input default theory, which were modified from
the models of the transformed HEX-programs.

The grammar for the syntax of input defaults is as follows:

lit ::= atom | −atom
conjunction ::= lit ( & lit )∗
default ::= [ conjunction| {z }

prerequisite

; conjunction ( , conjunction)∗| {z }
justifications

] / [ conjunction| {z }
conclusion

]

Here, ‘−’ is classical negation, ‘&’ is conjunction, and ‘atom’ is an atomic formula with
a concept or role.

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/



As for the output, the interesting information about an extension E is the default
conclusions that are in E. To this end, we filter all ground literals from the answer sets
belonging to the default conclusions derived in the program for the user (reasoning tasks
can be easily realized on top by customization).

The following example illustrates this elegant interface.

Example 7. For the Bird example, the input includes an OWL file for the ontology L in
Ex. 1 and a text file for D in Ex. 2, whose content simply is

[ Bird(X); Flier(X) ] / [ Flier(X) ]

We can now invoke dlvhex to ask for the extensions. We get only one extension in this
particular case, and the only fact returned to users is Flier(tweety).

However, users are not confined to simple defaults. Expert users in LP can provide
more sophisticated pruning rules, or rules that select specific extensions (e.g., under
preference) in terms of cq- or HEX-rules. They are directly sent to the dl-plugin and
added to cq-rules supplied by the df-converter as an input for dlvhex. Our front-end
therefore is flexible and can meet requirements of different classes of users.

Typing predicates. The front end supports explicit typing predicates as a means to
control the instantiation of defaults and to limit the search space in advance. For example,
in a predicate hasScholarship(P, S) the first argument should be a Student while the
second should be a Scholarship.

Users can attach to each default δ a type guard θ(W ) whose variables W appear
in δ, and list all facts for the predicate θ, or even write a program which computes them.
Semantically, θ(W ) is added to the precondition of δ and all facts θ(c) are added to the
background knowledge of the default theory. If a rule r in a transformation of δ satisfies
W ⊆Vars(r), then each atom dom(X) in it with X ∈W is replaced by θ(W ).

Example 8 (cont’d). Suppose we have many instances of the concept Bird in L, but just
want to know whether tweety and joe fly or not. We can modify the input to

[ Bird(X); Flier(X) ] / [ Flier(X) ]<mb(X)>

and add facts mb(tweety), mb(joe) to specify these two birds.

We remark that in general, adding typing predicates makes the transformations incom-
plete w.r.t. to the original theory. However, for so called semi-monotonic default theories
(where the extensions increase with an increasing set of defaults; e.g., the important
normal default theories [1] have this property) credulous conclusions are sound, as well
as skeptical conclusions if a unique extension is guaranteed.

6 Experimental Results

We have tested the transformations Π , Ω, and Υ using the prototype implementation
of the front-end as a new component in the dl-plugin for dlvhex, which uses RacerPro
1.9.2Beta [16] as DL-reasoner, to explore different aspects which can influence the
overall system performance, namely (i) the number of cq-atoms in each transformation,
(ii) the number of individuals (size of the ABox), (iii) size of the TBox, and (iv) the
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(a) Transformation Π
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(b) Transformation Ω
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(c) Transformation Υ

10−2

10−1

100

101

102

103

1 2 3 4 5 6 7 8 9 10 11

ev
al

ua
tio

n
tim

e
(s

ec
s)

Π
Ω
Υ

Split

(d) Comparing the transformations

Fig. 2: Bird example – running time (x-axis: number of individuals)

query caching to the DL-reasoner. The tests were done on a P4 1.8GHz PC with 1GB
RAM under Linux. We report here only the outcome of the Bird benchmark, which
consists of a set of ontologies in spirit of Ex. 1 with increasing size of Bird instances.

Fig. 2 shows experimental results of this test, including running time of each trans-
formation Π , Ω, Υ and the comparison between them when query caching to RacerPro
is applied. Missing entries mean time exhaustion during evaluation. For each transforma-
tion, we are interested in the total running time and time that RacerPro consumes when
caching is on. When caching is off, the difference between the total running time and
time used by RacerPro is insignificant, hence only the total running time is displayed.

The experimental results reveal that Ω and Υ are much faster than Π , since Ω
has fewer guessing rules and Υ has fewer cq-atoms, but Υ has a trade-off between
consistency guessing rules and cq-atoms in rules that compute extensions. Hence, the
performance of Ω and Υ depends very much on a particular set of defaults.

Regarding (i), the number of cq-atoms is important as they make up the search space
which increases exponentially. Regarding (ii), also the number of individuals is clearly
important (as it directly influences (i)), while for (iii), the size of the TBox was of minor
concern. When increasing the TBoxes (by enlarging the taxonomies systematically), the
performance was not much affected. This is not much surprising, as DL engines like



RacerPro are geared towards efficient reasoning with (large) TBoxes (of course, one
could have used “hard” TBoxes, but this seems less relevant from a practical perspective).
Regarding (iv), it appeared that query caching plays an important role, as the system
spends most of the time querying RacerPro for all ground cq-atoms.

To undercut the impact of (ii) on (i), a new version of dlvhex has been developed in
which independence information about different cq-atoms, which is based on the indi-
viduals occurring in them, can be exploited to factorize a HEX-program into components
that can be evaluated in parallel (see [17]). In particular, in the Bird benchmark, for
each individual a separate component will be created; sequentially processed, this yields
linear scalability with respect to (ii) (see Fig. 2d). Currently, the new dlvhex version is
beneficial only to transformation Ω, but further improvements are expected for Π and Υ .

7 Related Work and Conclusions

As we already mentioned, this work is not the first considering default reasoning with
description logics. Earlier ones [2–4] posed varying restrictions on the terminological
representation to keep decidability, and provided no implementations or only for limited
forms of defaults (on concepts). As our approach is theoretically based on a strict
separation between rules and ontologies, it guarantees decidability as long as the DL-KB
is convertible into a decidable first-order theory w.r.t. CQ-answering. Moreover, on the
practical side, we provide a concrete implementation for Reiter-style default logic via a
front-end hosted by a framework to combine rules and ontologies.

Hybrid Default Inheritance Theory (HDIT) [3] allows to specify defaults of form
A(X):C(X)

C(X) and A(X)∧R(X,Y ):C(Y )
C(Y ) . To retain decidability, concepts in HDIT must be

conjunctions of (negated) atomic concepts; [2] allows only DLs from ALC to ALCF .
An implementation of the DTL language is reported in [4], but roles cannot be defined.

The DL ALCK [6] adds an epistemic operator K to ALC which allows to specify
closed-world reasoning in queries. The laterDLKNF [5] can be regarded as an extension
of ALCK with epistemic operator A expressing “default assumption.” Defaults can only
be specified over concept expressions and are translated to TBox axioms using K for
prerequisites and conclusions, and ¬A for negated justifications.

In [7], circumscriptive (minimal) models have been used to define the Extended
Closed World Assumption (ECWA) over hybrid systems with a proof theory based on a
translation to propositional theories. However, hybrid systems are actually a fragment of
ALE and not very expressive. A recent paper [8] proposed extensions of expressive DLs
ALCIO and ALCQO to form circumscribed knowledge bases (cKBs). They can avoid
the restriction of nonmonotonic reasoning to named individuals in the domain, but still
allow only that concept names can be circumscribed.

Recently, [9] uses an argumentative approach for reasoning with inconsistent on-
tologies by translating DL ontologies into defeasible logic programs. However, only
inconsistent concept definitions were considered. Concerning semantics, this approach
is different from ours since it uses the notion of defeasible derivation which corresponds
to SLD-derivation in logic programming.

Concerning further work, the experimental comparison of the transformations Π , Ω
and Υ revealed several tasks that can help to improve performance. One is to investigate



more refined pruning rules that depend on the structure of the default theory. Another
issue is to look into particular kinds of default theories, such as normal or semi-normal
default theories, for which more efficient transformations may be found. At the bottom
level, we note that caching for cq-atoms (which is currently only available for plain
dl-atoms) would give additional benefit. Furthermore, dlvhex is currently using RacerPro
as its (only) DL-reasoner; it would be interesting to have support for other DL-reasoners
such as KAON2 or Pellet, and compare the results. Finally, improvement of dlvhex
evaluation at the general level (e.g., by refined dependency handling) would be beneficial.
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